
COMPLEXITY ANALYSIS OF THE COST-TABLE APPROACH
*TO THE DESIGN OF MULTIPLE-VALUED LOGIC CIRCUITS

by

Kriss A. Schueller
eDepartment of Mathematics and Computer Scienc

Youngstown State University
4Youngstown, OH 44555-313

and

r
D

Jon T. Butle
epartment of Electrical and Computer Engineering

M
Naval Postgraduate School

onterey, CA 93943-5121

*

October 8, 1995

A preliminary version of this manuscript appeared in the Proceedings of the 28th Annual
Allerton Conference on Communication, Control, and Computing, October 1990.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
08 OCT 1995 2. REPORT TYPE

3. DATES COVERED

4. TITLE AND SUBTITLE
Complexity Analysis of the Cost-Table Approach to the Design of
Multiple-Valued Logic Circuits

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School,Department of Electrical and Computer
Engineering,Monterey,CA,93943

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
We analyze the computational complexity of the cost-table approach to designing multiple alued logic
circuits that is applicable to I L, CCD?s, current-mode CMOS, and RTD?s. We s 2 how that this approach
is NP-complete. An efficient algorithm is shown for finding the exact I minimal realization of a given
function by a given cost-table.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

18

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

ABSTRACT

-
v

We analyze the computational complexity of the cost-table approach to designing multiple
alued logic circuits that is applicable to I L, CCD’s, current-mode CMOS, and RTD’s. We

s

2

how that this approach is NP-complete. An efficient algorithm is shown for finding the exact

I

minimal realization of a given function by a given cost-table.

ndex terms: computational complexity, cost-table, cost function, logic design, minimization,
multiple-valued logic, NP-complete, synthesis

I. INTRODUCTION

The first demonstration that a logic synthesis problem is NP complete occurred as the result of

-

d

two insights. To find the minimal sum-of-products expression for a logic function, one can pro

uce the set S of all prime implicants and then use a minimal subset of S to cover all minterms

s

s

of the function. The latter step is a specific case of the set covering problem. Because it i

pecific case, it is possible that it is not as complex as the general set covering problem. How-

p

ever, Gimpel [2] showed that this is not true. He showed that any instance of the set covering

roblem occurs as an instance of the sum-of-products problem. Subsequently, Karp [3] proved

-

p

that the set covering problem is NP-complete; thus, proving that extracting a minimal sum-of

roducts expression is NP-complete. While complexity questions have frequently occurred in

m

1

ultiple-valued logic (e.g. [1,7]), there has been no classification of the synthesis of multiple-

valued functions complexity classes, e.g. NP-completeness.

The need for design techniques for multiple-valued CCD circuits, [5], inspired interest in the

s

cost-table approach, e.g. [1, 6, 7]. In the cost-table approach, a given function is realized by

electing functions from a table and combining them. Associated with each chosen function is a

s

t

cost, which can represent chip area, power dissipation, speed, etc. The cost of a realization i

he sum of the costs of the component functions plus the cost of combining them. Usually, there

-

t

is more than one way to realize a given function, and the goal of the design is to find a realiza

ion of lowest cost. This is called the Cost-table Realization problem. The question posed and

d

answered in this paper is "How the does the time to solve the cost-table realization problem

epend on the size of the cost-table?". We show that this problem is NP-complete.

II. BACKGROUND AND NOTATION

A function f (X) is a mapping f : D → R , where D = {0, 1 , . . . , d −1} and
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

n

Keutzer and Richards [4] point out that there has been misunderstanding in certain papers on the complexity of the sum-of-products extraction
p

1

roblem. That is, the problem of finding a sum-of-products expression with no more than some given number of terms is NP-complete if the func-
tion is expressed as a truth table, but co-NP hard if the function is expressed as a sum-of-products expression.

1

W

R = {0, 1 , . . . , r −1}.

hen n = 1, it is convenient to represent f (X) in the form < f (0), f (1), . . . , f (d −1)>. For

t

o

example, if d = r = 4, then f (X) = <3,2,1,0> is the four-variable complement function. The se

f all r -valued functions of n d -valued variables is U . Let c (f), the cost function, be a map-r
n

r 0+ 0+

d ,

np d ,ing c : U → RRRR , where RRRR is the set of nonnegative real numbers. For example, the cost

c

function c (f) introduced by Kerkhoff and Robroek [6] for the design of 4-valued CCD logic cir-

uits correlates closely with the chip area occupied by the most compact implementation of f .

m

f

Given a function f (X) to be realized using a cost-table, we seek a representation of the for

(X) = f (X) ++++ f (X) ++++ . . . ++++ f (X), where ++++ is ordinary addition with logic values viewed1 2 m

1 2 nas integers. For example, if f (X) = <0, 1, 2, 3> and f (X) = <3, 2, 1, 0>, the

f (X) ++++ f (X) = <3, 3, 3, 3>. In our analysis, it is convenient to assume that the sum of two

l

1 2

ogic values does not exceed the highest logic value, r −1. Thus, ++++ can be implemented as the

s

e

sum mod r or as truncated sum, for example. The latter is more common in practice, since it i

asily implemented, e.g. in CCD or current-mode logic. The effect of this assumption is not to

-+ f is not a reali++restrict the operations possible, but the synthesis technique. For example, f +1 1

.

L

zation of the synthesis technique because two components sum to a value greater than r − 1

et σ be the cost of realizing the sum of two functions. The cost of the realization

+ f is+++ . . . ++++ f +++f = f +1 2 m

1 2 m ,

w

c (f) + c (f) + . . . + c (f) + (m −1) σ

here σ is the cost of combining two cost-table functions.

s

t

A basis function f has the property that f (A) is 1 for exactly one assignment A of value

o X and is 0 for all other assignments. Let BT be the set of all basis functions plus 00, the func-

b

tion that is 0 for all assignments of values to the variables (e.g., <0,0,0,0>). BT is called the

asis cost-table. F is a cost-table if and only if BT ⊆ F ⊆ U . Note that all functions in BTr
nd ,

t

b

are needed in F . Indeed, if the function f to be realized has the property f ∈BT , then f canno

e realized, unless f ∈F . Of all the ways to realize a given function f using cost-table F , one

2

realization, f = f ++++ f ++++ . . . ++++ f , where f ∈F , has a cost that is lower than or equal to1 2 m i

1 2 m+ f+++ . . . ++++ f +++

a

the cost of all other realizations of f using F . Denote realization f = f +

s a minimal cost realization of f . Note that, there may be more than one such realizations. Its

-cost, c (f) + c (f) + . . . + c (f) + (m −1) σ, is the cost of realizing f ∈U using cost1 2 m d ,n

t F

r

able F, and will be denoted as c (f). Thus, whenever we seek the cost of realizing a given

u

function f using a given cost-table F , we assume that, of all the ways to realize a function f

sing cost-table F , we choose the lowest cost realization. Formally,

,c (f) = min {c (f) + c (f) + . . . + c (f) + (m −1) σ }F 1 2 m
f , f ,..., f ∈F1 2 m

mf 1 2= f ++++f ++++ . . . ++++f

sThe total cost, T (F), of cost-table F i

T (F) = c (f).
r

nd ,

F
f ∈U
Σ

F is a minimal cost-table if T (F) ≤ T (F′), for all F′ , such that e F e = e F′ e , where e F e is the

cardinality of F . The term "minimal" describes the cost over all realizations of a cost-table.

The (Minimal) Cost-table Realization, (MCR) CR, problem is:

l

c

Given a (minimal) cost-table F , a function f , and a cost function c , find a minima

ost realization f = f ++++ f ++++ . . . ++++ f , where f ∈ F .

T

1 2 m i

he (Minimal) Cost-table Decision, (MCD) CD, problem is:

,

d

Given a (minimal) cost-table F , a function f , a cost function c , and a target cost P

oes there exist a realization f = f ++++ f ++++ . . . ++++ f , such that

c 1 2 m i

1 2 m

(f ++++ f ++++ . . . ++++ f) ≤ P , where f ∈ F ?

Let (MCD(F , f , c , P)) CD(F , f , c , P) denote an instance of this problem. (MCD(F , f , c , P))

i

CD(F , f , c , P) is said to be satisfied if and only if such a realization exists. The size K of an

nstance of (MCD(F , f , c , P)) CD(F , f , c , P) is d e F e . K accounts for both the function size,

3

n

as well as the cost-table size. Since the MCD(F , f , c , P) is a special case of the

s

n

CD(F , f , c , P), there is the possibility that it is not as complex. We show, however, that this i

ot the case.

III. COMPLEXITY OF THE COST-TABLE REALIZATION PROBLEM

T

The main results are presented in two theorems.

heorem 1: The Cost-table Decision problem is NP-complete.

.Theorem 2: The Minimal Cost-table Decision problem is NP-complete

We proceed by first showing that these two problems are within NP; that is, we show in,

t

Lemma 1, that there exists a non-deterministic Turing Machine that calculates each problem in

ime polynomial in the size of the problem.

Next, in Lemma 2, we show that there is a polynomial time transformation of the Knapsack

r

i

problem to the (Minimal) Cost-table Decision Problem, where the former is satisfied iff the latte

s satisfied. Since the Knapsack problem is known to be NP-complete, this shows that the

(Minimal) Cost-table Decision problem is NP-complete.

Consider the solution of (MCD(F , f , c , P)) CD(F , f , c , P) by a non-deterministic algorithm

ethat scans F , choosing as many as r − 1 copies of each function for each of the d possibln

n .

T

assignments of values to the variables. This can be done in no more than OO((r − 1) d e F e) time

his algorithm can check whether the chosen function is a realization of f in OO(d) time. Also,n

f

a

it can check whether the cost is less than or equal to P in OO((r −1) e F e) time. Since the size o

n instance of this problem is K = d e F e , this proves the following.

L

n

emma 1: There exists a non-deterministic algorithm that solves (MCD(F , f , c , P))

CD(F , f , c , P) in time that is polynomial in its size.

4

:The Knapsack Decision problem can be stated as follows

Given a set Q of objects, a size function s :Q →ZZZZ , a value function v :Q →ZZZZ , a+ +

′u Q∈
Σ dsize S , and a value V , is there a subset Q′ ⊆ Q such that v (u) ≥ V an

s (u) ≤ S , where ZZZZ is the set of positive integers?Σ
∈u Q ′

+

Let KD(Q , s , v , S , V) be an instance of the Knapsack Decision problem. KD(Q , s , v , S , V) is

-

l

said to be satisfied if and only if such a subset Q ′ exists. The size of an instance of this prob

em is e Q e .

Definition: Let Φ be a transformation from any instance of the Knapsack Decision problem to

an instance of the (Minimal) Cost-table Decision problem

Φ(KD(Q , s , v , S , V)) = (MCD(F , f , c , P)) CD(F , f , c , P),

1)

with F , f , c , and P defined as follows:

The cost-table F consists of r -valued functions on one d -valued variable, where r = S +1

,and d = e Q e +1. Besides the d + 1 functions in BT , there are d −1 non-basis functions f 1

f 2 d −1 i i i i, . . . , f , where f corresponds to u , the i th element in Q . Specifically, f (0) = s (u),

f (i) = 1, and f (j) = 0 , for 1 ≤ j ≤ d − 1, j ≠ i . We havei i

d −1

1

2

d −1f

1

2
...

f

f

=

=
=

<s (u), 0, 0, 0, . . . ,1>.

<

..

.
s (u), 0, 1, 0, . . . ,0>

<s (u), 1, 0, 0, . . . ,0>

2) Function f has the form

5

f = <S , 1, 1, 1, . . . , 1>.

.Since f (i) = 1 for 1 ≤ i ≤ d −1, each f can be used at most once in the realization of fi

i ∈ -

s

This corresponds to the restriction that each element u S is used at most once in the Knap

ack Decision problem. Also, since f (0) = S , the sum f (0) over the f ’s used in a reali-Σ i

z i

i

ation of f (i.e. s (u)) must be less than or equal to S .

3) Let c (f) = s (u), for 1 ≤ i ≤ d −1. Let the cost of functions in BT be defined as follows.i i

j
j

c (b) =
I
K
Lv (u)

0
otherwise
if j = 0

,

ewhere b (j) = 1 and b (i) = 0 for i ≠ j . That is, the cost of <1,0, . . . ,0> is 0, while thj j

cost of all other basis functions is the value of some object in Q . The cost of the constant

function <0,0, . . . ,0> is 0. Let the cost, σ, of combining two functions be 1.

If Φ is a transformation to CD(F , f , c , P), we allow any specification of the cost of a

efunction g , such that g F . If Φ is a transformation to MCD(F , f , c , P), we make th∈/

∈/additional specification that, for g F , c (g) = ∞. In this way, F is a minimal cost-table;

t

i.e. no interchange of functions outside F with functions inside F that preserves the size of

he cost-table yields a total cost lower than T (F).

4) P is defined by

(1)P = v (u) − V + (S + d − 2).
∈ui Q

iΣ

1 2 3 i dExample: Consider a knapsack defined as follows. Let Q = {u , u , u }, and let s (u) an

v (u) be specified as follows.i

6

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

s i i(u) v (u)
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

3 4
i

u 1
iiiiiiiiiiiiiiiiii

i
u 2 2 3

iiiiiiiiiiiiiiiiii

i
u 3 2 2

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

.

Let S = 5 and V = 6.

Table I: Sizes and values of elements of the knapsack

Of the 8 ways to choose subsets of Q , there are two that satisfy KD (Q , s , v , S , V),

ii

Σ
1

Q 1 1 2
u ∈Q

= {u , u } v (u) = 7 ≥ V = 6

Σ s (u) = 5 ≤ S = 5
1u ∈Q

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Σ
2

Q 2 1 3
u ∈Q

= {u , u } v (u) = 6 ≥ V = 6

Σ s (u) = 5 ≤ S = 5
2u ∈Q

iic
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c

.

A

Table II: The two solutions to the Knapsack Decision problem

pplying the transformation yields a cost-table where r = 6 and d = 4 with functions

7

iii

i
Function Cost
iii

<

<0,0,0,0> 0 0

1,0,0,0> 0 0

<0,1,0,0> 4 v (u)

2

1

)

<

<0,0,1,0> 3 v (u

0,0,0,1> 2)v (u 3

1)

<

<3,1,0,0> 3 s (u

3,0,1,0> 2)s (u 2

3)
i
<2,0,0,1> 2 s (u
iicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

.

T

Table III: Cost-table as transformed from the Knapsack Decision problem

he function to be synthesized is f = <5,1,1,1>, and P = 10. The instance of the cost-table

s

f

decision problem, CD (F , f , c , P) so formed, is satisfied by exactly two realizations of f , a

ollows.

iii

i
Function Cost Function Cost
iii

<

<3,1,0,0> 3 <3,1,0,0> 3

2,0,1,0> 2 <2,0,0,1> 2

3
i
<0,0,0,1> 2 <0,0,1,0>
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

i
Additions 2 Additions 2
iii

i
Total 9 Total 10
iicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

.Table IV: Two solutions to the Cost-table Decision problem

1 2 1 3 gThese two realizations match left to right with {u , u } and {u , u }, the subsets satisfyin

8

KD(Q , s , v , S , V). Note that, of the two realizations of <5,1,1,1,1>, one is uniquely

W

minimal, that given in the left hand column above.

e can make the following general statement.

eLemma 2: Φ is a polynomial time transformation of the Knapsack Decision problem to th

(Minimal) Cost-table Decision problem, such that KD(Q , s , v , S , V) is satisfied if and only if

P

(MCD(F , f , c , P)) CD(F , f , c , P) = Φ(KD(Q , s , v , S , V)) is satisfied.

roof: The proof is divided into three parts. First, it is shown that Φ takes polynomial time.

(

Then, it is shown that, if KD(Q , s , v , S , V) is satisfied, then Φ(KD(Q , s , v , S , V)) is satisfied

only if). Finally, it is shown that, if Φ(KD(Q , s , v , S , V)) is satisfied then,

KD(Q , s , v , S , V) is satisfied (if).

To form the cost-table F ⊆ U , Φ generates d −1 = e Q e non-basis functions, d basisr
1

f

d ,

unctions, and the constant function <0,0, . . . ,0>. Each function can be described by a

t

t

truth table with d = e Q e + 1 entries. An entry in the truth table can be made in constan

ime. Thus, the total time needed to generate F is OO(e Q e). A cost is then assigned to each

i

2

,

t

function requiring constant time per function. Since s (u) can be computed in constant time

he target function f can be formed in OO(e Q e) time. Finally, P requires the summation of

all v (u), which also takes OO(e Q e) time. Since each step takes at most polynomial time, thei

entire transformation takes polynomial time.

rAs preparation for the next two parts, conside

g =

I
J
K
J
Lb

b

f

if d ≤ i ≤ m

if u Q ′ and 1 ≤ i ≤ d −1

if u Q ′ and 1 ≤ i ≤ d −1

,i

i

i

i

0

i ∈/

w

∈

here Q′ is the subset of Q that satisfies the Knapsack Decision problem and

.+ g = f+++ . . . ++++ g +++m = S − S′ + e Q e , for S′ = s (u). We now show that g +
iu ∈Q′

i 1 2 mΣ
9

.+ g , when the variable value is 0+++ . . . ++++ g +++Consider g +1 2 m

i =1

m

i
u Q ′

i
u Q ′

i
i =d

m

0g
i i

(0) = f (0) + b (0) + b (0)Σ Σ Σ Σ
∈ ∈/

∈
Σ

ui Q ′
i= s (u) + 0 + (m −d +1) = S′ + 0 + (S −S′) = f (0).

e+ g is evaluated as follows. By th+++ . . . ++++ g +++When the variable value is not 0, g +1 2 m

i

m

1
i i i

i =
Σ r

1

definition of f and b , g (j) = 0 if i ≠ j and 1 ≤ j . Therefore, g (j) = 1 = f (j), fo

≤ j ≤ d −1. This proves that g ++++ g ++++ . . . ++++ g = f .1 2 m

m1 2 s+ g i+++ . . . ++++ g +++The cost of realization f = g +

s (u) + v (u) + 0 + (m − 1)Σ
∈/
Σ

i iu ∈Q′
i

u Q′
i

or

S′ + v (u) − V′ + (S − S′ + e Q e − 1) ,
ui ∈Q

i

ui

Σ

Σ

∈ Q′
iwhere V′ = v (u). From (1), the cost of this realization is P − V′ + V .

s

S

(only if) Assume KD(Q , s , v , S , V) is satisfied by Q′ . The size of this collection i

′ = s (u), and the value is V′ . Since Q′ satisfies KD(Q , s , v , S , V), S′ ≤ S and
ui ∈ Q′

iΣ

FV′ ≥ V . Now consider c (f), the minimal cost realization of f in cost-table F . Because

-+ g is an upper bound on the minimal cost reali+++ . . . ++++ g +++the cost of the realization g +1 2 m

F F n

M

zation, c (f) ≤ P − V ′ + V . Since V′ ≥ V , c (f) ≤ P . If F is a minimal cost-table, the

CD(F , f , c , P) is satisfied. Else, CD(F , f , c , P) is satisfied.

e

r

(if) Assume Φ(KD(Q , s , v , S , V)) = (MCD(F , f , c , P)) CD(F , f , c , P) is satisfied by th

ealization f = h ++++ h ++++ . . . ++++ h , where h F . Then, c (h) + (l − 1) ≤ P. We show that1 ∈2 l i
i =1

l

i

10

Σ

rthe Knapsack Decision problem is satisfied fo

Q′ = {u e h BT }.i i ∈/

,To calculate the "size" of the solution, consider the function evaluated at 0; that is

h (0) = f (0). We can write
i
Σ
=1

l

i

u ∈Q ′
i

u Q ′
i ,Σ h (0) + h (0) = SΣ

i i ∈/

where the functions in the right sum are in BT , while those in the left sum are not. Since

h (0) ≥ 0, the right sum in the above equation is nonnegative. Therefore, h (0) ≤ S and
i

ii
u ∈Q ′
Σ

thus,

s (u) ≤ S.
ui ∈
Σ

Q′
i

nTo calculate the "value" of the solution, consider the cost of the realizatio

f = h ++++ h ++++ . . . ++++ h . Because this is a solution to (MCD(F , f , c , P)) CD(F , f , c , P),1 2 l

i =1

l

iΣc (h) + (l − 1) ≤ P.

,Inserting the definitions of P and c (h) into this equation yieldsi

u ∈Q′
i

u Q′
i

u ∈Q
i .Σ s (u) + v (u) + l − 1 ≤ v (u) − V + (S + d − 2)Σ Σ

i i i∈/

Rearranging, yields

V + R
J
Q
l − [(d −1) + S − s (u)] H

J
P

≤ v (u).
ui i∈Q′

i
u ∈Q′

iΣ Σ

Σ
i

i
u ∈Q

k

D

We show that the term in large brackets is 0. Thus, V ≤ v (u), and so the Knapsac

ecision problem has a solution. Each of the 1 terms in f = <S , 1, 1, . . . ,1> is realized

,by either a b or an f , for 1 ≤ i ≤ d − 1. The f terms contribute s (u) to f (0). Thus
i

ii i i
u ∈Q′
Σ

11

S − s (u) copies of b are needed. It follows that l = (d − 1) + S − s (u). Thus,
ui i∈Q′

i 0
u ∈Q′

iΣ Σ

Σ Σ
∈ ∈ii

i
u Q ′

i
u Q ′

.a solution to KD(Q , s , v , S , V) exists, such that s (u) ≤ S and v (u) ≥ V

Q.E.D.

I

Since the Knapsack Decision problem is NP-complete, Lemmas 1 and 2 prove the main result.

V. AN ALGORITHM FOR FINDING MINIMAL COST

.

N

In this section, we present an algorithm, MINiCOST, for solving the cost-table problem

ext, we analyze the time complexity of MINiCOST, showing how the number of steps depends

-

t

on K , the size of the problem. We show that for smaller cost-tables, the complexity is exponen

ial, while for larger cost-tables, the complexity is polynomial in the size of the problem.

A. MINiiCOST

We present an algorithm, MINiCOST to find the minimal cost realization of a function f

h

m

using the cost-table technique. Specifically, MINiCOST (F , f) finds a realization of f wit

inimum cost, c (f), given any cost-table F ⊆U and any function f U . No other pub-r
n

r
d ,nF d , ∈

e

a

lished algorithm is known. It is superior to the exhaustive search algorithm used in [7]. Th

lgorithm for solving CD given in Section III is the nondeterministic version of a deterministic

-

t

algorithm that searches exhaustively over all combinations of cost-table functions for a realiza

ion with a cost less than a given threshold. Searching for the least cost realization yields

behavior that is identical to MINiCOST.

However, it is not necessary to search over all cost-table functions. Given two functions,

.

I

f and e , let e ≤≤ f mean that, for every assignment A of values to the variables, e (A) ≤ f (A)

t follows that, unless e ≤≤ f , e will never be used in a realization of f . Let E = {e e e ≤≤ f }.

(E , ≤≤) is a partially ordered set, and the elements in E can be indexed such that, for all

12

e e E , if e ≤≤ e , then j ≤ k . Then, e = 00 (the constant 0 function) and e = f . Letj , k j k 0 e E e − 1∈

∩I = (F E) − BT . I consists of all functions in cost-table F that are potentially in the minimal

B

realization of f , excluding functions in BT . MINiCOST forms a sequence of cost-tables

T = F ⊂ F ⊂ . . . ⊂ F , such that for F − F = {f }, where f ∈ I . MINiCOST0 1 e I e i i −1 i i

F j BT j ib
0

egins by initializing c (e) to c (e), for 0 ≤ j < e E e . Then, for each cost-table F , where

a1 ≤ i ≤ e I e , c (e) is computed for each e E . When MINiCOST reaches F , it has found
iF j j e I e∈

.minimal cost realization of the given function f in cost-table F

MINiCOST only checks for one use of f in the realization of any e . A complication

i

i j

j r

t

arises if f is required more than once in the minimal realization of some function e . Conside

he case where e == f ++++ f ++++ e , and e == f ++++ e . Since e ≤≤ e ≤≤ e , the ordering over Ek i i r s i r r s k

F k F i F sr
k i i

equires that r ≤ s ≤ k . So c (e) will be calculated using c (f) and c (e), but the cost of

e will have already been updated using the functions f and e . Therefore, algorithms i r

e

f

MINiCOST correctly computes the cost of functions which use multiple copies of cost-tabl

unctions.

B. THE TIME COMPLEXITY OF MINiiCOST

1. The Time Complexity for a Single Function.

MINiCOST consists of two steps. First, the cost of each e E using the basis cost-table isj ∈

nn -

t

computed by summing over all functions in BT , requiring d operations or OO(d e E e) opera

ions for all e . Second, for each cost-table F , the new cost of each e is computed, requiring

a n

j i j

t most OO(d e E e) operations per cost-table. Since there are e I e cost-tables, the entire algorithm

has time complexity OO(d e I e e E e).n

In [7], cost-tables for one-variable 4-valued functions were analyzed in order to study heuris-

-

t

tics for finding minimal cost-tables. We can conclude that MINiCOST works well for cost

ables for such functions with sizes as small as 5 and as large as 256.

13

iii

i Algorithm MINiiCOSTiii

{ Compute costs of e ∈E (and thus f) using the basis cost-table }i

F 0
c (00) := c (00)

for j := 1 to e E e − 1 do
c (e) := e (A) c (b) + e (A) σ − σF 0 j

b (A)=1
b ∈BT

j

b (A)=1
b ∈BT

jΣ Σ
j j e

a
{where σ is the cost of adding two functions and e (A) is the value (viewed as an integer) of e for th
ssignment of values A such that b (A) = 1. The left sum represents the costs of basis functions, while the

{

right sum less σ represents the costs of adders.}

Compute costs of e ∈E (and thus f), using F , the next cost-table in the sequence }
f

i i

or i := 1 to e I e do
begin { for f in I , where { f } = F − F }.i i i i −1

j i j i −1 }for j := 0 to e E e − 1 do {set the cost of a function e using F to the cost of e using F
c (e) := c (e)Fi j Fi −1 j

i Fi −1 iif c (f) < c (f)

then
begin { update the cost of e using F if it is less than the cost of e in F }

F

j i j i −1

i i ic (f) := c (f)

for j := 0 to e E e − 1 do
if f = e then c (e) = min{c (e), c (f)}i j Fi j Fi −1 j i

i jelse if f ≤≤ e
then

begin
find h such that h + f = ei j

Fi iNEWiCOST := c (h) + c (f) + σ
c (e) := min{c (e), NEWiCOST }Fi j Fi −1 j

end
end { update the cost of e in F if it is less than the cost of e in F }

i

i i j i −1

i i i −1end { for f in I , where { f } = F − F }.iiic
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

t
Table V: Formal description of MINiCOST, an algorithm for finding
he minimal cost realization of a given function from a given cost-table.

2. The Time Complexity as a Function of Input Size

From the previous analysis, the time complexity of MINiCOST is polynomial in e E e . We

K

now consider the relationship between e E e and the size of the Cost-table Decision problem

= d e F e . Let F be a cost-table of size one larger than the basis cost-table; thereforen

ne F e = d + 2. Let f , the function whose cost we wish to minimize, be the constant r − 1 func-

,tion, so E = U , and e I e = 1. In this case, the time complexity of MINiCOST is OO(d r)d ,n
r n d n

w n nhile the size of the problem is K = d (d + 2). Thus, MINiCOST’s time complexity is

OO(K r).K√dd √dd

14

As the size of the cost-table e F e increases, the time complexity of MINiCOST becomes

spolynomial in e F e . In the limit, F = U , and the time complexity of MINiCOST becomed ,n

n

r

d d n d n
O

n n
O(d r r), while the size of the problem is K = d r . Thus, MINiCOST’s time com-

plexity, OO(K /d), is polynomial in the size of the problem, when the cost-table is sufficiently2 n

r
nd , .

3

large (approaching U)

. The Time Complexity for All Functions

In the process of finding a minimal cost of function f , MINiCOST finds a minimal cost

realization for all functions e E . If f is chosen to be the constant r −1 function, then e ≤≤ fj ∈

∈ d ,n
r

d ,nf ror all functions e U , so E = U . Using the previous analysis, a minimal cost realization

of all functions can be found in OO(d e F −BT e r) time by MINiCOST. Thus, MINiCOSTn d n

-

i

provides a more efficient alternative to exhaustive search algorithms, as demonstrated in analyz

ng various cost-tables [7].

SV. CONCLUDING REMARK

During the past fifteen years of research on cost-tables, there has been no computationally

s

p

tractable algorithm for finding minimal cost realizations of given functions. We show that thi

roblem is NP-complete. We also show that restricting the cost-tables to be minimal (the total

c

cost of realizations by such cost-tables is minimal) produces no relief; the problem is still NP-

omplete. This result represents compelling evidence for the value of heuristic methods for

V

cost-tables.

. ACKNOWLEDGMENTS

The authors appreciate the comments by two referees which served to improve the

-

8

manuscript. The research reported was supported by NATO Grant 423/84, by NSF Grant MIP

706553, and an NPS Direct Funded Grant in cooperation with the Naval Research Laboratory.

15

REFERENCES

-

t

[1] M. H. Abd-El-Barr, Z. G. Vranesic, and S. C. Zaky, "Algorithmic synthesis of MVL func

ions for CCD implementations," IEEE Trans. Comp., vol. C-40, no. 8, pp. 977-986, August

[

1991.

2] J. F. Gimpel, "A method of producing a boolean function having an arbitrarily prescribed

e

1

prime implicant table," IEEE Trans. on Electron. Comput., vol. EC-14, no. 6, pp. 485-488, Jun

965.

[3] R. M. Karp, "Reducibility among combinatorial problems," in R. E. Miller and J. W.

[

Thatcher, Complexity of Computer Computations, Plenum Press, 1972, pp. 85-103.

4] K. Keutzer and D. Richards, "Computational complexity of logic synthesis and optimiza-

[

tion," Proc. of the International Workshop on Logic Synthesis, pp. 1-15, May 1989.

5] H. G. Kerkhoff and M. L. Tervoert, "Multiple-valued logic charge coupled devices," IEEE

[

Trans. on Comp., vol. C-30, no. 9, pp. 644-652, Sept. 1981.

6] H. G. Kerkhoff and H. A. J. Robroek, "The logic design of multiple-valued logic functions

1

using charge-coupled devices," Proc. of the 12th Inter. Symp. on Multiple-Valued Logic, May

982, pp. 35-44.

[7] K. A. Schueller and J. T. Butler, "On the design of cost-tables for realizing multiple-valued

circuits," IEEE Trans. Comp., vol. C-41, no. 2, pp. 178-189, Feb. 1992.

16

